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Abstract:

Dynamic mesh adaption on unstructured grids is a powerful tool for efficiently com-

puting unsteady problems to resolve solution features of interest. Unfortunately, this
causes load imbalance among processors on a parallel machine. This paper describes

the parallel implementation of a tetrahedral mesh adaption scheme and a new global
load balancing method. A heuristic remapping algorithm is presented that assigns par-

titions to processors such that the redistribution cost is minimized. Results indicate

that the parallel performance of the mesh adaption code depends on the nature of the
adaption region and show a 35.5X speedup on 64 processors of an SP2 when 35% of the

mesh is randomly adapted. For large-scale scientific computations, our load balancing

strategy gives almost a sixfold reduction in solver execution times over non-balanced
loads. Furthermore, our heuristic remapper yields processor assignments that are less

than 3% off the optimal solutions but requires only 1% of the computational time.
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Introduction

Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady

three-dimensional problems that require grid modifications to efficiently resolve solution

features. By locally refining and coarsening the mesh to capture flowfield phenomena of

interest, such procedures make standard computational methods more cost effective. Highly

localized regions of mesh refinement are required in order to accurately capture shock waves,

contact discontinuities, vortices, and shear layers. This provides scientists the opportunity to

obtain solutions on adapted meshes that are comparable to those obtained on globally-refined

grids but at a much lower cost.

Unfortunately, the adaptive solution of unsteady problems causes load imbalance among



processors on a parallel machine. This is because the computational intensity is not only

time dependent, but also varies spatially over the problem domain. Dynamically balancing

the computational load is, however, very difficult. It requires reliable measurements of

processor workloads and the amount of data movement, as well as the minimization of inter-

processor communication. Various methods on dynamic load balancing have been reported

to date [3,4,6,7,9,10]; however, most of them lack a global view of loads across processors.

A systematic way of measuring and balancing processor loads is needed for a method to be

applicable to a variety of realistic applications.

Figure 1 depicts our framework for parallel adaptive flow computation. It consists of a flow

solver and mesh adaptor, with a partitioner and mapper that redistributes the computa-

tional mesh when necessary. The mesh is first partitioned and mapped among the available

processors. The flow solver then runs for several iterations, updating solution variables that

are typically stored at the vertices of the mesh. Once an acceptable solution is obtained, the

mesh adaption procedure is invoked. It targets edges for refinement or coarsening based on

an error indicator computed from the flow solution. The old mesh is then locally adapted,

generating a new computational mesh. A quick evaluation step determines if the new mesh

is sufficiently unbalanced to warrant a repartitioning. If the current partitioning indicates

that it is adequately load balanced, control is passed back to the flow solver. Otherwise, a

repartitioning procedure is invoked to divide the new mesh into subgrids. The new partitions
are then reassigned to the processors in a way that minimizes the cost of data movement. If

the cost of remapping the data is less than the computational gain that would be achieved

with balanced partitions, all necessary data is appropriately redistributed. Otherwise, the

new partitioning is discarded and the flow calculation continues on the old partitions.
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Figure 1: Overview of our framework for parallel adaptive flow computation.

Notice from the framework in Fig. 1 that the computational load is balanced and the runtime

communication reduced only for the flow solver but not for the mesh adaptor. This is

acceptable since the flow solver is usually several times more expensive. It is also obvious

from Fig. 1 that mesh adaption, repartitioning, processor assignment, and remapping are

critical components of the framework and must be accomplished rapidly and efficiently so

as not to cause a significant overhead to the flow computation.

For parallel adaptive flow computations, the initial grid must first be partitioned among the



available processors. A good partitioner should minimize the total execution time which is a

function of load balance (computational time) and the interprocessor communication time.

It is also important for our framework that the partitioning phase be performed rapidly.
There are several excellent heuristic algorithms for solving the NP-hard graph partitioning

problem [15]. Since mesh partitioning is not being addressed in this paper, we will assume
that reasonable partitions for our test meshes are available, and address this issue in future

work. For the record, we used the multilevel spectral Lanczos partitioning algorithm with

local Kernighan-Lin refinement from the Chaco software package [8].

This paper briefly describes an efficient parallel implementation of a dynamic mesh adap-

tion code which has shown good sequential performance on the C90 when coupled with a
variety of unstructured flow solvers to solve realistic problems in helicopter and fixed-wing

aerodynamics [1,2,5,14]. The parallel version consists of an additional 3,000 lines of C++
code with MPI, allowing portability to any system supporting these languages. This code

is a wrapper around the original mesh adaption program written in C, and requires almost

no changes to the serial version. Only a few lines were added to link it with the parallel

constructs. An object-oriented approach allowed this to be performed in a clean and efficient

manner. Complete details are given in [11].

This paper also describes a new method that has been developed to dynamically balance

the processor workloads with a global view. The load-balancing procedure uses a dual graph
representation of the computational mesh in order to keep the complexity and connectivity

constant during the course of an adaptive computation. It uses heuristic but accurate metrics
to estimate the computational gain and the redistribution cost of having a balanced workload

after each mesh adaption. Even though mesh repartitioning is an inherent component of our

global load balancing scheme, it is not addressed in this paper but will be the focus in
subsequent work. A concise description of the new inertial spectral mesh repartitioning

method applied to small model meshes is given in [13].

Tetrahedral Mesh Adaption

We give a brief description of the tetrahedral mesh adaption scheme; complete details are

given in [1]. The code, called 3D_TAG, has its data structures based on edges that connect
the vertices of a tetrahedral mesh. This means that the elements and boundary faces are

defined by their edges rather than by their vertices. These edge-based data structures make

the mesh adaption procedure capable of performing anisotropic refinement and coarsening

that results in a more efficient distribution of grid points.

At each mesh adaption step, tetrahedral elements are targeted for coarsening, refinement, or

no change by computing an error indicator for each edge. Edges whose error values exceed
a specified upper threshold are targeted for subdivision. Similarly, edges whose error values

lie below another lower threshold are targeted for removal. Only three subdivision types

are allowed for each element and these are shown in Fig. 2. The 1:8 isotropic subdivision

is implemented by adding a new vertex at the mid-point of each of the six edges. The 1:4

and 1:2 subdivisions can result either because the edges of a parent tetrahedron are targeted

anisotropically or because they are required to form a valid connectivity for the new mesh.

When an edge is bisected, the solution vector is linearly interpolated at the mid-point from

the two points that constitute the original edge.

Mesh refinement is performed by first setting a bit flag to one for each edge that is targeted
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Figure 2: Three types of subdivision are permitted for a tetrahedral element.

for subdivision. The edge markings for each element are then combined to form a 6-bit

binary pattern. Elements are continuously upgraded to valid patterns corresponding to the

three allowed subdivision types shown in Fig. 2 until none of the patterns show any change.
Once this edge-marking is completed, each element is independently subdivided based on its
binary pattern.

Mesh coarsening also uses the edge-marking patterns. If a child element has any edge
marked for coarsening, this element and its siblings are removed and their parent element is

reinstated. The parent edges and elements are retained at each refinement step so they do
not have to be reconstructed. Reinstated parent elements have their edge-marking patterns

adjusted to reflect that some edges have been coarsened. The mesh refinement procedure

is then invoked to generate a valid mesh. Note that edges cannot be coarsened beyond the
initial mesh.

Pertinent information is maintained for the vertices, elements, edges, and external boundary

faces of the mesh. In addition, each vertex has a list of all the edges that are incident upon
it. Similarly, each edge has a list of all the elements that share it. These lists eliminate

extensive searches and are crucial to the efficiency of the overall adaption scheme.

Parallel Implementation

The distributed-memory implementation of the 3D_TAG mesh adaption code consists of
three phases: initialization, execution, and finalization. The initialization and finalization

steps are executed only once for each problem outside the main solution_adaption cycle

shown in Fig. 1. The execution step runs a local copy of 3D_TAG on each processor. Good
parallel performance is therefore critical during this phase since it is executed several times
during a flow computation.

The initialization phase takes as input the global initial grid and the corresponding parti-
tioning information that places each tetrahedral element in exactly one partition. It then

distributes the global data across the processors, defining a local number for each mesh ob-

ject, and creating the mapping for objects that are shared by multiple processors. Shared

vertices and edges are identified by searching for elements that lie on partition boundaries.

A bit flag is set to distinguish between shared and internal objects. A list of shared pro-

cessors (SPL) is also generated for each shared object. The maximum additional storage

that is required for the parallel code depends on the number of processors used and the

fraction of shared objects. For the cases in this paper, this was less than 10% of the memory
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requirements of the serial version.

The execution phase runs a copy of 3D_TAG on each processor that refines or coarsens its

local region, while maintaining a globally-consistent grid along partition boundaries. The

first step is to target edges for refinement or coarsening based on an error indicator for each

edge that is computed from the flow solution. This process results in a symmetrical marking
of all shared edges across partitions because shared edges have the same flow and geometry

information regardless of their processor number. However, elements have to be continuously

upgraded to one of the three allowed subdivision patterns shown in Fig. 2. This causes some

propagation of edges being targeted for refinement that could mark local copies of shared

edges inconsistently. This is because the local geometry and marking patterns affect the

nature of the propagation. Communication is therefore required after each iteration of the

propagation process. Every processor sends a list of all the newly-marked local copies of
shared edges to all the other processors in their SPLs. The process may continue for several

iterations, and edge markings could propagate back and forth across partitions.

Figure 3 shows a two-dimensional example of two iterations of the propagation process across

a partition boundary. The process is similar in three dimensions. Processor P0 marks its

local copy of shared edge GEl and communicates that to P1. P1 then marks its own copy

of GEl, which causes some internal propagation because element marking patterns must be

upgraded to those that are valid. Note that P1 marks its third internal edge and its local
copy of shared edge GE2 for refinement during this phase. Information about the shared

edge is then communicated to P0, and the propagation phase terminates. The four original

triangles can now be correctly subdivided into a total of 12 smaller triangles.

GEl

@
--- Shared edge

• Shared mark -- Internal edge

o Internal mark ..... New edge

Figure 3: A two-dimensional example showing communication due to the propagation of

edge markings.

Once all edge markings are complete, each processor executes the mesh adaption code with-

out the need for further communication, since all edges are consistently marked. The only

task remaining is to update the shared edge and vertex information as the mesh is adapted.

This is handled as a post-processing phase.

New edges and vertices that are created during refinement are assigned shared processor
information that depends on several factors. Four different cases can occur when new edges
are created:



• If an internal edgeis bisected,the center vertex and all newedgesincident on that vertex
arealsointernal to the partition. Sharedprocessorinformation is not requiredin this case.

• If a sharededgeis bisected,its two children and the center vertex inherit its SPL, since
they lie on the samepartition boundary.

• If a new edgeis createdin the interior of an element, it is internal to the partition since
processorboundariesonly lie along element faces. Sharedprocessorinformation is not
required.

• If a new edgeis created that lies acrossan element face, communication is required to
determinewhether it is sharedor internal. If it is shared,the SPL must be formed.

All the casesare straightforward, except for the last one. If the intersectionof the SPLsof
the two end-pointsof the new edgeis null, the edgeis internal. Otherwise,communicationis
requiredwith the sharedprocessorsto determinewhether they havea local copyof the edge.
This communication is necessarybecauseno information is stored about the facesof the
tetrahedral elements. An alternate solution would be to incorporate facesas an additional
object into the data structures,and maintaining it through the adaption. However,this does
not comparefavorably in terms of memoryor CPU time to a singlecommunication at the
end of the refinementprocedure.

Figure 4 showsthe top view of a tetrahedron in processor P0 that shares two faces with P1.

In P0, the intersection of the SPLs for the end-points of all the three new edges LE1, LE2,
and LE3 yields P1. However, when P0 communicates this information to P1, P1 will only

have local copies corresponding to LE1 and LE2. Thus, P0 will classify LE1 and LE2 as

shared edges but LE3 as an internal edge.

[] Shared face with P 1

Internal face of PO

-- Shared edge with P 1

Internal edge of PO

LE3

Figure 4: Example showing how a new edge that lies across a face is classified as shared or
internal.

The coarsening phase purges the data structures of all edges that are removed, as well as

their associated vertices, elements, and boundary faces. No new shared processor informa-

tion is generated since no mesh objects are created during this step. However, objects are

renumbered as a result of compaction and all internal and shared data are updated accord-
ingly. The refinement routine is then invoked to generate a valid mesh from the vertices left

after the coarsening.

It is sometimes necessary to create a single global mesh after one or more adaption steps.

Some post processing tasks, such as visualization, need to processes the whole grid simulta-

neously. Storing a snapshot of a grid for future restarts could also require a global view. The

finalization phase accomplishes this task by connecting individual subgrids into one global

mesh. Each local object is first assigned a unique global number. Details of how global num-

bers are assigned are given in [ll]. All processors then update their local data structures
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accordingly. Finally, a gather operation is performed by a host processor to concatenate the

local data structures into a global mesh. The host can then interface the mesh directly to

the appropriate post-processing module without having to perform any serial computation.

Dual Graph Representation

The dual graph representation of the initial computational mesh is one of the key features

of this work. Parallel implementation of adaptive flow solvers requires a partitioning of the

computational mesh such that each element belongs to an unique partition. Communication

is required across faces that are shared by adjacent tetrahedral elements residing on different

processors. Hence for the purposes of partitioning, we consider the dual of the original

computational mesh. The tetrahedral elements of the computational mesh are the vertices of
the dual graph. An edge exists between two dual graph vertices if the corresponding elements

share a face. A graph partitioning of the dual thus yields an assignment of tetrahedra to

processors.

Each dual graph vertex has two weights associated with it. The computational weight,

W¢omp, indicates the workload for the corresponding element. The remapping weight, Wrem_p,
indicates the cost of moving the element from one processor to another. The weight Wcomp

is set to the number of leM elements in the refinement tree because only those elements that

have no children participate in the flow computation. The weight Wrem_p, however, is set
to the total number of elements in the refinement tree because all descendants of the root

element must move with it from one partition to another if so required. The connectivity

and W¢omp determine how dual graph vertices should be grouped to form partitions that

minimize the disparity in the partition weights. The Wr_m_p determines how partitions should
be assigned to processors such that the cost of data movement is minimized.

Every edge in the dual graph also has a weight that models the runtime communication. This

information is used by the mesh partitioner along with the computational weights of the dual

graph vertices to balance the processor workloads and minimize the runtime communication.

The edge weights are uniform for the test cases in this paper.

The most significant advantage of using the dual of the initial computational mesh is that

its complexity and connectivity remains unchanged during the course of an adaptive com-

putation. The partitioning and load-balancing times therefore depend only on the initial

problem size and the number of partitions. New grids obtained by adaption are translated

to the two weights, W¢omp and Wr_map, for every element in the initial mesh.

One minor disadvantage of using the dual grid is when the initial computational mesh is

either too large or too small. For extremely large initial meshes, the partitioning time will

be excessive. This problem can be circumvented by agglomerating groups of elements into

larger superelements. For very small meshes, the quality of the partitions will be bad. One
can then allow the initial mesh to be adapted one or more times before using the dual graph

for all future adaptions.

Preliminary Evaluation

The preliminary evaluation step rapidly determines if the dual graph with a new set of Wcomp
should be repartitioned. If projecting the new values on the current partitions indicates that

they are adequately load balanced, there is no need to repartition the mesh. In that case,



the flow computation continuesuninterrupted on the current partitions.

A proper metric is required to measurethe load imbalance. If Wm_x is the sum of the wcomp
on the most heavily-loaded processor, and Wavg is the average load across all processors, the

average idle time for each processor is (Wm_x -- W_vg). This is an exact measure of the load

imbalance. The mesh is repartitioned if the imbalance factor Wma,,/Wavg is greater than a
specified threshold.

Similarity Matrix Construction

If the preliminary evaluation phase determines that the dual graph with the new Wcomp is
not adequately load balanced, the mesh is repartitioned to balance the processor workloads.

Any mesh partitioning algorithm can be used here, as long as it quickly delivers partitions
that are reasonably balanced.

Once new partitions are obtained, they must be mapped to the processors such that the

redistribution cost is minimized. We assume that the redistribution cost is proportional to

the volume of data moved. In the simplest case, the number of new partitions is equal to the
number of processors. In our general framework, however, it is possible to have the number

of partitions be an integer multiple F of the number of processors, and then map more than

one partition to a proc[_.-,or. The rationale behind allowing multiple partitions per processor
is that performing data mapping at a finer granularity results in a smaller volume of data

movement at the exl_n._ of processor reassignment time. However, the simpler scheme of

setting F to unit)' suffices for most practical applications.

The first step toward proces_r reassignment is to compute a similarity measure S that
indicates how the" rvmapping weights W_m_p of the new partitions are distributed over the

processors. It is rcpre,Jented a.s a matrix of P rows and P× F columns, where P is the number

of processors. Each ent_" ._',j is the sum of the Wremap of all the dual graph vertices that are
common between p_e_or I and new partition j. Therefore, the sum of the entries in row i

is the total remapping weil_ht of all the dual graph vertices currently residing on processor i.

A similarity matrix for a remapping of eight partitions on four processors is shown in Fig. 5.
Only the non-zero entri_ are shown.

New Partitions

mm

872

45

1N

Figure 5: An example of a similarity matrix S for P = 4 and F = 2. The F largest weights
for each processor are shaded.

Processor Reassignment

A new partition j with the largest value of Sij is called the dominant partition for processor
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i. The overhead for data movement from processor i can be minimized by reassigning it

to its dominant partition. To minimize the total data movement for all processors when

F = 1, each processor i must be assigned to an unique partition j; so that the objective
function 2- = P_=f Sij, is maximized subject to the constraint j/ # jm,Vi _ m. In general,

each processor i is assigned to exactly F unique partitions ji(1),ji(2),... ,ji(F) so that the
objective function

P F

i=1 k=l

is maximized subject to

ji(p) # jm(q), Vi(p) # re(q); p = 1,2,...,F; q = 1,2,...,F.

Both an optimal and a heuristic greedy algorithm have been implemented for solving this

problem. When F = 1, the problem trivially reduces to solving a maximally weighted

bipartite graph, with P processors and P partitions in each set. An edge of weight Sij exists

between vertex i of the first set and vertex j of the second set. If F > 1, the processor

reassignment problem can be reduced to the maximally weighted bipartite graph problem

by duplicating each processor and all of its incident edges F times. Each set of the bipartite
graph then has P × F vertices. After the optimal solution is obtained, the solutions for all F

copies of a processor are combined to form a one-to-F mapping between the processors and

the partitions.

The pseudocode for our heuristic algorithm is as follows:

/* initialization */

for (j=O; j<#par¢itions; j++) partition_map[j] = unassigned;

for (i=O; i<#processors; i+÷) tota1_unmapped[i] = #partitions / #processors;

while (there exists an unassigned partition) {

for (i=O; i<#processors; i++) /* mark */

for (k=O; k<total_unmapped[iJ; k++)

mark largest entry $[i][j] such that partition_map[j] == unassigned;

}

foreach (j such that partition_map[j] == unassigned)

if (there exists at least one marked entry in column j) {

find the largest marked entry S[i] [j];

total_unmapped[i]--;

partition_map[j] = assigned; }

/* map */

The heuristic algorithm consists of an initialization step, followed by repeated iterations

of the mark and map steps. Initially, all partitions are considered unassigned and each

processor has a counter set to F that indicates the remaining number of partitions it needs
to be assigned. In the marking phase, each processor that has less then F assigned partitions

marks the necessary number of largest entries in S from the set of unassigned partitions.

The mapping phase examines all the available partitions j that have at least one marked

entry. The largest entry S 0 is chosen and partition j is assigned to processor i. This results

in partition j becoming unavailable and processor i requiring one less partition assignment.

The mark and map steps are repeated until all partitions are assigned. Applying our heuristic
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algorithm to the similarity matrix in Fig. 5generatesthe newprocessorassignmentshownin
Fig. 6(a). The optimal assignmentin shownin Fig. 6(b). The valueof the objective function
2" is 2849for the heuristic algorithm but 2989for the optimal solution.

NewPartitions New Partitions

New Processors New Processors

Figure 6: The similarity matrix S after processor assignment using the (a) heuristic and (b)
optimal algorithms.

We claim that our heuristic algorithm can never give a processor assignment that results in

a data movement cost that is more than twice the optimal cost. Given a similarity matrix S,

the heuristic algorithm initially assigns processor i to partition j such that Sit has the largest
value L in row i and column j. Partition j is then removed from the available list. Assume

that the optimal algorithm maps processor i to partition k and processor I to partition j.

However, the values of Sik and Sij are bounded by L. If, in the worst case, all partition-to-

processor assignments are chosen incorrectly, the heuristic algorithm gives a solution that is
twice as expensive as the optimal solution.

Cost Calculation

The computational gain due to repartitioning is proportional to the decrease in the load

imbalance achieved by running the adapted mesh on the new partitions rather than on the

old partitions. Recall from Sec. 5 that the average load imbalance for each processor is given

by (Wm_x -- W_vs). The decrease in load imbalance due to the new partitioning is therefore

(W°'_x - W,_]_), where W°_ and W_, are the sum of the Wcomp on the most heavily-loaded
processor for the old and new partitionings, respectively. If it requires Tit,r secs to run one

iteration of the flow solver on one element of the original mesh, and if it is expected that the

next mesh adaption will occur after Nadapt solver iterations, the total computational gain for

the new partitioning is TiterN_pt(Wm°l_ - W_,).

The redistribution cost is calculated from the similarity matrix obtained after processor

reassignment. Two machine-dependent parameters are used to calculate the actual cost:

the remote-memory latency time Tht and the message setup time T,¢t,.,w Tht is the time

required for memory-to-memory copying of a word, and applies to every dual grid vertex

that is moved. T,,tup is the time required to prepare message headers, load the message

buffer, and so on, and applies to each set of elements that is moved from one processor to

another. If the flow solver and mesh adaptor require M words of storage per element, and if

C = (E _ Sij- 2") and N are the total number of elements and sets of elements to be moved,

respectively (cf. Fig. 7), the total communication overhead for mapping new partitions to

processors is CMTIat + NTsetup. Since the quantity CM is typically much larger than N for
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realistic problems, the second term can be neglected.

New Partitions

C=1485 N=6

New Processors

Figure 7: Calculating the totalredistributioncost from the similaritymatrix S. Note that

two (not three) setsof elements are moved from old processor 2 because new partitions0

and 6 are both mapped to new processor 3.

The new partitioning and mapping are accepted if the computational gain is larger than the
redistribution cost:

T; N /W. °Id newiter adapt_ max -- Wmnax) > CMTlat + NTsetup.

The numerical simulation is then interrupted to properly redistribute all the data.

Remapping

The remapping phase is responsible for physically moving the data when it is reassigned to a

different processor. When an element is moved to a different processor, two kinds of overhead

are incurred: communication and computation. The communication overhead includes the

cost of packing and unpacking the send and receive buffers, as well as the message setup

time and the remote-memory latency time. The computation cost is the time necessary to
rebuild the internal and shared data structures in a consistent manner.

The remapping procedure used in the experiments reported in this paper is not fully oper-

ational; however, it does predict the cost with reasonable accuracy. Based on the processor

reassignments, all appropriate mesh objects are sent to their new host processor, accurately

modeling the communication phase. Note that the relationship between the number of ele-

ments moved and the total data volume is not exactly linear. This is due to the movement
of the shared data structures whose size is a function of the locations of the old and new

partition boundaries. The shared information accounts for a small percentage of the data
volume, and is the cause of the slight perturbations.

The computation phase in not yet complete, and data structures are only partially restored

after the data movement. Since communication accounts for the majority of the remapping

overhead, we expect the simulated remapping time to be within 10% of the fully functional

procedure. The implementation of this phase will be completed shortly.

Results

The parallel 3D_TAG and global load balancing procedures have been implemented on an

IBM SP2 distributed-memory multiprocessor. Both codes are written in C and C++, with
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the parallel activities in MPI for portability. Note that no SP2-specific optimizations were

used to obtain the performance results reported in this section.

The computational mesh is the one used to simulate the acoustics experiment of Purcell [12]

where a 1/7th scale model of a UH-1H helicopter rotor blade was tested over a range of

subsonic and transonic hover-tip Mach numbers. Numerical results and a detailed report of

the simulation are given in [14].

Results are presented for one refinement and one coarsening step using three different edge-

marking strategies. The first strategy, called Local_l, targeted 5% of the edges for refinement

in a single spherical region of the mesh. The subsequent coarsening phase undid all of

the refinement to restore the initial mesh. The second strategy, called Local_2, refined

35% of the edges in a single rectangular region of the mesh. Coarsening was performed

within a rectangular subregion. The third strategy, called Random, consisted of randomly

targeting edges for adaption such that the mesh sizes after both refinement and coarsening

were approximately equal to those obtained in the Local.2 case. These strategies represent

significantly different scenarios. In general, real edge-marking patterns are expected to lie

somewhere between Local_l and Local..2. Table 1 presents the progression of grid sizes

through the two adaption steps for each marking strategy.

Local_l Local_2 Random

Elements Edges Elements Edges Elements Edges

Initial Mesh 60,968 78,343 60,968 78,343 60,968 78,343
After Refinement 82,259 104,178 201,543 246,112 201,734 246,949

After Coarsening 60,968 78,343 100,241 125,651 100,537 126,448

Table 1: Progression of grid sizes through refinement and coarsening.

Figure 8 illustrates the parallel speedup of the refinement and coarsening phases of the

3D_TAG code for the three edge-marking strategies. As expected, Random gives the best
speedup performance as the processor workloads are inherently balanced. Note that our

load balancing scheme only balances the load for the flow solver after the mesh adaption

step is completed. The refinement speedup results are the worst for the Local_l case because

a compact spherical region of the mesh is adapted. All of the work is thus performed by only

a handful of processors. The coarsening results are similar to those of the refinement step

because of the algorithmic similarities of the two methods. However, performance improves

significantly for the Local_l strategy. This is because the processor workloads are better

balanced as coarsening undoes all of the previous refinement. Extensive performance analysis

of the parallel 3D_TAG code is given in [11].

Figure 9 shows how the execution time is spent during the refinement and the subsequent

load-balancing phases of the Local_l and Local_2 strategies. The repartitioning times are
not shown as it is not the focus of this paper. As mentioned in Sec. 9, the remapping time

consists of communication and computation overheads. Note that the remapping time ini-

tially increases with the number of processors, but then gradually decreases. This is not

entirely unexpected. Even though the total volume of data movement increases with the

number of processors, there are actually more processors to share the work. This indicates

that our global load balancing strategy will remain viable on large numbers of processors as
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Figure 8: Speedup of the parallel mesh adaption code during the (a) refinement and (b)

coarsening stages.

the remapping phase will not become a bottleneck. The speedup curves in Fig. 8 also show

that the mesh adaption time decreases as more processors are used. Although the processor

reassignment time increases with the number of processors used, it remains negligible com-

pared to the adaption and remapping times even for 64 processors. The curves in Fig. 9
are for F = 1 using our heuristic processor reassignment algorithm. Similar results were

obtained for the coar_ning phase of the mesh adaption procedure.
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Figure 9: Anatomy of total execution times for the (a) Local_l and (b) Local_2 refinement

strategies.

Figure 10 compares the execution times and the amount of data movement for the Local_2

strategy when using the optimal and heuristic processor assignment algorithms. Four sets
of curves are shown in each plot for F = 1, 2, 4, and 8. The optimal method always requires

almost two orders of magnitude more time than our heuristic method. The execution times

also increase significantly as F is increased. This is because the size of the similarity matrix

grows with F. However, the volume of data movement decreases with increasing F. This
confirms our earlier claim that data movement can be reduced by mapping at a finer granu-

larity. The relative reduction in data movement, however, is not very significant for our test
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cases. The results in Fig. 10 illustrate that our heuristic mapper is almost as good as the

optimal algorithm while requiring significantly less time. Similar results were obtained for

the Local_l and Ftandota edge-marking strategies.
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Figure 10: Comparison of the optimal and heuristic mappers in terms of (a) execution time

and (b) volume of data movement for the Local_2 refinement strategy.

Figure 11 shows the relationship between the remapping time and the number of tetrahedral
elements that are moved from one processor to another. Individual data points on the curves

are obtained by varying F. As shown earlier in Fig. 10(b), increasing F reduces the number
of elements moved. Note, however, that the remapping time sometimes increases even when

fewer elements are moved. This is due to the computational requirements of the remapper

as described in Sec. 9. The plots demonstrate that for a given number of processors, there is

a strong correlation between the number of elements moved and the remapping time. This

confirms our two earlier claims. First, a good solution to the similarity matrix reduces the

remapping times. Second, the total number of elements moved can be scaled by a factor

to give a good approximation of the remapping time. This supports our evaluation model

which predicts whether a balanced load is worth the expense of remapping.
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Figure 11: Variation of the remapping time with the number of elements moved for the

Loca:]._2 refinement strategy.
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Finally, Fig. 12 illustrates the impact of load balancing on the execution time of the flow
solver. Note that the maximum possible improvement is not linear. It can be explained as

follows. Suppose that there are P processors and that each processor has N elements assigned
to it. In the worst case, all N elements on only one processor are isotropically refined (cf.

Fig. 2) using 3D_TAG to generate 8N elements while none of the other elements are refined.
If the adapted mesh is not load balanced, the flow solution would require time proportional to

8N, the most heavily-loaded processor. However, if the mesh were balanced, each processor
sP

would have 8N+(P-1)N elements. Thus, load balancing would give an improvement of p+zP

over a non-balanced load.
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22-
1

0 s 16 14 i:
Number of processors

Figure 12: Comparison of flow solver execution times with and without load balancing.

Note from Fig. 12 that the Ra_ndom case gives only a marginal improvement when the pro-
cessor loads are balanced. This is expected because the computational work is already dis-

tributed uniformly among the processors after the mesh is adapted. Local_l shows the best

improvement with load balancing because a small compact region of the mesh was refined

that led to a severe imbalance among the processors. With 64 processors, the improvement

is almost sixfold. It is important to realize that the results shown in Fig. 12 are for a single

refinement step. With repeated adaption, the gains realized with load balancing may be

even more significant.

Summary

Fast and efficient dynamic mesh adaption is an important feature of unstructured grids that
makes them especially attractive for unsteady flows. However, mesh adaption on parallel

computers can cause serious load imbalance among the processors. Dynamically balancing

the processor loads at runtime is a complex task.

We have described a distributed-memory implementation of an edge-based adaption scheme

that has shown good single-processor performance on the C90. The code is written in C

and C++ using the MPI message-passing paradigm. Performance results on an SP2 show
a 35.5X speedup on 64 processors when about 35% of a helicopter rotor mesh containing

more than 60,000 tetrahedral elements and 78,000 edges is randomly adapted. The speedup

is reduced to about 25.0X due to load imbalance when the same number of edges is refined

15



in a singlecompact regionof the mesh.

We have also describeda new dynamic load balancingschemethat balancesthe processor
workloads with a global view. The procedureusesa dual graph representationof the com-
putational meshto keepthe complexity and connectivity constant during the courseof an
adaptive computation. Each time the computational mesh is adapted, the load balanceris
invoked to determine if the new meshwarrants repartitioning. New partitions obtained by
repartitioning areassignedto processorsusinga heuristic algorithm that strives to minimize
the amount of data movement.

Resultshavedemonstratedthat the remappingtime decreaseswith the numberof processors,
indicating that our global load balancingstrategy will remain viable on massively-parallel
systems.Although the processorreassignmenttime increasesasmoreprocessorsareused,it
remainsnegligiblecomparedto the adaption and remappingtimes. Our heuristic remapper
hasbeenshownto yield processorassignmentsthat differ from optimal solutionsby lessthan
3% but requiresonly 1%of the computational times. Finally, large-scalescientificcomputa-
tions on 64 processorsof an SP2show that load balancinggivesalmost a sixfold reduction
in flow solverexecution times overnon-balancedloads. With multiple meshadaptions, the
gainsrealized with load balancingmay be evenmoresignificant.
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